合肥高质量N-羟基丁二酰亚胺
氟硼二吡咯(BODIPY)类荧光化合物由于其在生物标记、DNA检测、环境检测等领域的应用,特别是在传感器和生物探针方面的应用,使其近些年的研究得到了迅速的发展。N-羟基琥珀酰亚胺活性酯应用于诊断、抗原分离、免疫分析、亲和色谱等领域,本文通过设计并成功合成N-羟基琥珀酰亚胺活性酯(NHS活性酯),对其进行氨解,并得到羧酸衍生物,以探索NHS活性酯的应用。其中本文一共涉及合成了5个全新的BODIPY荧光染料,并且都未见文献报道。通过核磁、质谱、红外光谱等进行了表征分析。在实验过程中,本文探索并得出以下结论:1、三枝BODIPY苄基酯在钯碳催化条件下氢解,如果时间过长会使BODIPY荧光化合物发生断裂。2、三枝BODIPY荧光化合物其中一枝氯被甘氨酸甲酯取代的话,受到甘氨酸甲酯的影响,其核磁图中许多峰都会发生裂分,通过做变温核磁,升温后其中裂分的峰会归一。3、以DSC制备NHS活性酯时,当连有对氯酚时,用亲核性的DMAP做碱会使三枝BODIPY荧光化合物发生断裂。改用N,N-二异丙基乙胺可使反应顺利进行。4、通过含活性酯BODIPY荧光化合物与甘氨酸甲酯的氨解反应,验证了NHS活性酯的活性,以及其与氨基酸的反应。 由于NHS分子中含有一个羟基。合肥高质量N-羟基丁二酰亚胺
N-羟基丁二酰亚胺常用于合成肽、、氨基酸保护剂、蛋白质与亲和色谱的反应前体,还可用于的诊断和显像。纯度≥99%的N-羟基丁二酰亚胺的钠盐或钾盐常用作化学电镀剂。N-羟基丁二酰亚胺是以盐酸羟胺、三乙胺和丁二酸酐为原料,以1,4-二氧六环为溶剂,以EDTA三钠盐为稳定剂,先后经过制备游离羟胺,N-酰化反应和闭环脱水反应制得。考察了物料配比、三乙胺用量等多种因素对实验的影响,并对其进行了工艺优化。通过优化,确定的比较好工艺条件为:1,4-二氧六环作为溶剂和脱水剂;n(盐酸羟胺):n(三乙胺):n(丁二酸酐)=;反应温度为120℃;反应时间为5h。在此工艺条件下,产品收率为,产品纯度≥。N-羟基马来酰亚胺结构中含有活泼的碳碳双键,可进行自由基型热自聚,又易与各种给氢体进行Michael加成反应,因此该类化合物在绝缘材料、耐高温材料、橡胶助剂以及农药、医药中间体等方面都具有的用途。N-羟基马来酰亚胺是以盐酸羟胺、氢氧化钠和顺丁烯二酸酐为原料,以EDTA三钠盐为稳定剂,以新型高效阻聚剂——对羟基苯甲醚为阻聚剂,先后经过制备游离羟胺,N-酰化反应和闭环脱水反应制得。通过工艺优化,得到较佳的工艺条件为:水作为溶剂;n(盐酸羟胺):n(氢氧化钠):n。安徽口碑好的N-羟基丁二酰亚胺哪里能买N-羟基丁二酰亚胺是一种重要的有机中间体。
加热到75oC时,三当量的亲核试剂与一当量烯丙基底物在乙腈和乙酸(equiv)混合溶剂的条件下反应24-28h。在较优条件下,作者进行了底物拓展。对于烯丙基底物而言,苯连接给电子基团(甲基)和拉电子基团(酮羰基,三氟甲基,酯基,氰基及卤原子)或者不连接基团都可以取得中等到良好的收率,并且连接给电子基团反应收率较高。另外,NHS,NHPI和N-羟基-5-降冰片烯-2,3-二羧酸酰亚胺作为亲核试剂也可进行此反应。图2烯丙基C-H活化的底物范围作者根据机理实验的研究提出一个涉及C-H键活化的机理。首先,Pd(OAc)2活化1的C-H键形成η3-π-烯丙基钯络合物[I]。缺电子复合物I经历NHS亲核进攻并生成II。在反应下条件,络合物II断裂形成化合物3和Pd0,然后被Cu(OAc)2氧化,再生为活性Pd(II)催化剂。由于只使用了一当量氧化剂Cu(II),作者认为溶解氧作为末端氧化剂。图3可能的催化循环总而言之,作者开发的Pd催化N-羟基酰亚胺的C-H氧化烯丙基烷基化反应新颖,条件温和且可进行克级规模生产。可以耐受各种取代的烯丙基芳烃,在该反应中生成相应线性烯丙氧基吡咯烷二酮的产量中等至优异。接下来会进行此方法应用于合成构建小型生物活性化合物库的研究。
N-羟基丁二酰亚胺(NHS)广泛应用于多肽合成工业,目前已经实现了工业化生产。中国是世界上NHS主要的生产国,国内NHS的生产方法通常采用赵红亮研究开发的方法。主要以硫酸羟胺和丁二酸酐为原料。NHS的熔点为95-98℃,NHS合成的一步脱水反应一般控制在125-130℃之间,真空度在,当体系中不再有水产生,反应结束。体系温度高于NHS的熔点,此时NHS呈液态,在体系中加入正丁醇,利用50℃以上NHS全溶于正丁醇而硫酸钠难溶于正丁醇的特性,除去反应中产生的硫酸钠固体,此后将正丁醇-NHS溶液冷却到100C以下,离心分离析出的NHS,得到了NHS的粗品,NHS粗品采用乙酸乙酯精制后,即可获得商品NHS。 胺类萃取剂可以看作是氨的烷基取代物。
考虑到NHS具有弱酸性质,而不少文献报道了从水溶液中成功提取有机酸的研究。参考有关文献,针对NHS水溶液的特点,本文建立了以三辛胺(TOA)为络合剂萃取分离的方法,研究了几种稀释剂,考察油水两相体积比、萃取温度、盐析剂等工艺条件对萃取过程的影响以及多级错流萃取下的萃取率,讨论了相应的萃取机理,根据络合萃取过程的数学模型,对25℃下NHS在油水两相中的萃取相平衡实验数据进行模拟,模拟结果与实验数据吻合,研究结果可为工业萃取分离提取NHS的装置和操作提供理论基础和设计数据。
萃取实验在带夹套保温的500mL烧杯和250mL分液漏斗中进行,采用超级恒温槽(河南予华仪器)控制温度,温度变化范围为士0.10℃。
N-羟基丁二酰亚胺在哪些领域使用 多。安徽CAS NO 6066-82-6N-羟基丁二酰亚胺
根据文献丁二酸、NHS的紫外比较大吸收在210nm附近。合肥高质量N-羟基丁二酰亚胺
由于丁二酸和NHS这两种物质都是酸性物质,流动相中添加少量的三氟乙酸有利于改善峰形,从研究结果看,添加的TFA为流动相总体积的0.1%时即可满足要求。当流动相正己烷与乙醇的体积比为85:15,同时加入总体积的0.1%三氟乙酸时,可满足分析要求,三种物质的峰完全分开,且丁二酸酐杂峰受其影响小,为比较好的流动相构成。
其中保留时间为7.425及其之前的峰均为溶剂(乙醇-乙酸)形成的峰,而后面三个保留时间为10.495、19.490、22.878则分别为丁二酸、NHS与丁二酸酐的峰,从图中不难看出三者已完全分开,可用于下二酸定量分析。 合肥高质量N-羟基丁二酰亚胺